Fixed points and approximately heptic mappings in non-Archimedean normed spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of additive mappings in non-Archimedean fuzzy normed spaces

In this paper we introduce a notion of a non-Archimedean fuzzy norm and study the stability of the Cauchy equation in the context of non-Archimedean fuzzy spaces in the spirit of Hyers–Ulam–Rassias–Găvruţa. As a corollary, the stability of the Jensen equation is established. We indeed present an interdisciplinary relation between the theory of fuzzy spaces, the theory of non-Archimedean spaces ...

متن کامل

Fixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces

In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.

متن کامل

Fixed Points and the Stability of an AQCQ-Functional Equation in Non-Archimedean Normed Spaces

and Applied Analysis 3 is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof 7 for mappings f : X → Y , where X is a normed space and Y is a Banach space. Cholewa 8 noticed that the theorem of Skof is still...

متن کامل

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

On approximate dectic mappings in non-Archimedean spaces: A fixed point approach

In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2013

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2013-209